新闻|股票|评论|外汇|债券|基金|期货|黄金|银行|保险|数据|行情|信托|理财|收藏|读书|汽车|房产|科技|视频|博客|微博|股吧|论坛

50ETF期权的无风险套利机会分析与应用 ——箱式套利原理及应用

  • 字号
2016-01-19 16:49:49 来源:和讯网  作者:徽商期货研究所 蒋贤辉

   成文日期:2016/01/19

  在之前一期中,介绍了如何利用PCP平价公式来进行50ETF的无风险套利,本期中试着探索在不同执行价下是否也存在PCP平价带来的无风险套利机会。

  一、箱式套利原理

  对于每一个执行价格的看涨期权和看跌期权来说,在均衡条件下,它们都满足PCP平价公式。假设第一个期权的执行价格为K1,对应Call和Put的价格分别为c1和p1,第二个期权的执行价格为K2,对应Call和Put的价格分别为c2和p2,那么对于这两个执行价格的看涨期权和看跌期权来说,都分别满足:

  


  将上式变形为:

 


  上面两式相减,得:

  


  在均衡状态和不考虑交易成本情况下,对于任意的两组执行价格的看涨看跌期权,都满足上面的等式,当市场偏离将出现无风险套利机会。即使考虑交易成本,当等式偏离足够远以至于超出无套利区间时也将存在无风险套利机会。

  (一)正向套利

  当出现

  


  时,可以持有左边的组合来获取无风险收益,即以价格c1买入执行价格为K1的Call,p2的价格买入执行价格为K2的Put,以价格p1卖出执行价格为K1的Put,c2的价格卖出执行价格位K2的Call,期初存在净支出:c1+p2-p1-c2。

  在期权到期时,按照标的价格与执行价格的大小关系分三种情况讨论:(假设K1

  1、S(T)≤K1

  此时,执行价格为K1和K2的Call处于虚值,不行权,其价值为0,执行价格为K1的put被行权,以K1的价格买入标的50ETF,同时执行价格为K2的Put主动行权,以K2的价格卖出标的50ETF,整个组合到期时获得收入K2-K1,整个操作包括交易成本(D)获利为K2-K1-(c1+p2-p1-c2)-D,这将是你的无风险利润。

  期初和期末的现金流表格整理如下:

  表1: 组合在t时刻和在到期(T)时S(T)≤K1情况下的现金流(不考虑交易成本)


  2、S(T)>K2

  此时,执行价格为K1和K2的Put处于虚值,不行权,其价值为0,执行价格为K1的Call主动行权,以K1的价格买入标的50ETF,同时执行价格为K_2的Call被行权,以K_2的价格卖出标的50ETF,整个组合到期时获得收入K2-K1,整个操作包括交易成本(D)获利为K2-K1-(c1+p2-p1-c2 )-D。

  期初和期末的现金流表格整理如下:

  表2: 组合在t时刻和在到期(T)时S(T)>K2情况下的现金流(不考虑交易成本)

  


  3、K1

  此时,执行价格为K_1的Put和K2的Call处于虚值,不行权,其价值为0,执行价格为K1的Call主动行权,以K1的价格买入标的50ETF,同时执行价格为K2的Put主动行权,以K2的价格卖出标的50ETF,整个组合到期时获得收入K2-K1,整个操作包括交易成本(D)获利为K2-K1-(c1+p2-p1-c2 )-D。

  期初和期末的现金流表格整理如下:

  表3: 组合在t时刻和在到期(T)时K1

  


  (二)反向套利

  当出现

  


  时,可以通过卖出左边的组合来获取无风险收益,即以价格c1卖出执行价格为K1的Call,p2的价格卖出执行价格为K2的Put,以价格p1买入执行价格为K1的Put,c_2的价格买入执行价格位K_2的Call,期初的净收入为c1+p2-p1-c2。在期权到期时,按照标的价格与执行价格的大小关系分为三种情况讨论:(假设K1

  1、S(T)≤K1

  此时,执行价格为K1和K2的Call处于虚值,不行权,其价值为0,执行价格为K1的Put行权,以K1的价格卖出标的50ETF,同时执行价格为K2的Put被行权,以K_2的价格买入标的50ETF,整个组合到期时存在支出K2-K1,整个操作包括交易成本(D)为(c1+p2-p1-c2 )-(K2-K1)-D,这将是你的无风险利润。

  期初和期末的现金流表格整理如下:

  表4: 组合在t时刻和在到期(T)时S(T)≤K1情况下的现金流(不考虑交易成本)

  


  2、S(T)>K2

  此时,执行价格为K1和K2的Put处于虚值,不行权,其价值为0,执行价格为K1的Call被行权,以K1的价格卖出标的50ETF,同时执行价格为K2的Call行权,以K2的价格买入标的50ETF,整个组合到期时存在支出K2-K1,整个操作包括交易成本(D)获利为(c1+p2-p1-c2 )-(K2-K1)-D。

  期初和期末的现金流表格整理如下:

  表5: 组合在t时刻和在到期(T)时S(T)>K2情况下的现金流(不考虑交易成本)

  


  3、K1

  此时,执行价格为K1的Put和K_2的Call处于虚值,不行权,其价值为0,执行价格为K1的Call被行权,以K_1的价格卖出标的50ETF,同时执行价格为K2的Put被行权,以K2的价格买入标的50ETF,整个组合到期时支出K2-K1,整个操作包括交易成本(D)获利为(c1+p2-p1-c2 )-(K2-K1)-D。

  期初和期末的现金流表格整理如下:

  表6: 组合在t时刻和在到期(T)时K1

  


  (三)组合套利

  考虑4组执行价格,对于每一个执行价格的看涨看跌期权都满足PCP平价公式,假设第一个期权的执行价格为K1,对应Call和Put的价格分别为c1和p1,第二个期权的执行价格为K2,对应Call和Put的价格分别为c2和p2,第三个期权的执行价格为K3,对应Call和Put的价格分别为c3和p3,第四个期权的执行价格为K4,对应Call和Put的价格分别为c4和p4那么对于这四个执行价格的期权来说,每两组将满足:

  


  上面两式相减,得:

  在均衡状态和不考虑交易成本情况下,对于任意的四组执行价格的看涨看跌期权,都满足上面的等式,当市场偏离将出现无风险套利机会。即使考虑交易成本,当等式偏离足够远以至于超出无套利区间时也将存在无风险套利机会。

  二、案例

  为了说明问题,选择50ETF 1月到期的期权作为分析,样本选择2015年11月25日到2016年1月18日的日收盘价数据。通过两两配对比较,取年化收益率作为结果分析发现,在不考虑交易成本情况下,每天都存在无风险套利的机会。即使考虑交易成本,除去交易成本情况下的无风险收益机会也是经常存在。

  图:正向套利年化收益率时间序列图


  拿正向套利来说,不考虑交易成本情况下,在1.95到2.6两两配对的执行价里,时间跨度38个交易日的样本内,正向套利年化无风险收益率在20%以上的套利就有341次机会,达到100%以上的就有59次机会,甚至1000%的机会都有4次机会。同理,反向套利获得的利润与期初的收入比较,其中收益率在20%以上的亦有268次机会,超过100%的也有54次机会,在1000%以上的机会有4次。

  下面以具体实例来展示。

  (一)案例—正向套利

  2015年12月16日,2.4和2.45执行价格的Call和Put收盘价如下:


  当天若以价格0.08买入执行价格为2.4的Call,0.1507买入2.45执行价格的Put,同时以价格0.0719卖出一份2.45执行价格的Call和以价格0.1175卖出一份2.4执行价格的Put,期初支出0.0413(元/份ETF,合约乘数为10000),总共需要支出413元。到期时,无论标的价格与执行价格处于何种水平,正向套利最后都有正的收益:K_2-K_1,在此为2.45-2.4=0.05(元/份ETF,合约乘数为10000),总共为500元,42天无风险收益97元,年化无风险收益率为204%。

  (二)案例—反向套利

  2015年12月17日,2.5和2.55执行价格的Call和Put收盘价如下:


  当天若以价格0.0596卖出执行价格为2.5的Call,以0.2236卖出2.55执行价格的Put,同时以价格0.0404买入一份2.55执行价格的Call,以价格0.1858买入一份2.5执行价格的Put,期初收入0.0573(元/份ETF,合约乘数为10000),总共收入573元。到期时,无论标的价格与执行价格处于何种水平,反向套利最后支出都为K_2-K_1,在此为2.55-2.5=0.05(元/份ETF,合约乘数为10000),41天无风险收益73元。在此期初收入为573,期末只需要支出500元,相当于以负利率借入573元。

  (三)案例—正反组合套利

  如果同时操作这两组套利,即以价格0.08买入执行价格为2.4的Call,0.1507买入2.45执行价格的Put,同时以价格0.0719卖出2.45执行价格的Call和以价格0.1175卖出2.4执行价格的Put;以价格0.0596卖出执行价格为2.5的Call,0.2236卖出2.55执行价格的Put,同时以价格0.0404买入2.55执行价格的Call和以价格0.1858买入2.5执行价格的Put,不考虑交易成本情况下,期初获得收入为573-413=160元,期末没有任何的支出,相当于白捡了160元。

  【免责声明】本文仅代表作者本人观点,与本网站无关。本网站对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。

(责任编辑:王雪冰 HF074)

相关新闻

评论

还可输入 500
推广
热点

  【独家稿件声明】凡注明“和讯”来源之作品(文字、图片、图表),未经和讯网授权,任何媒体和个人不得全部或者部分转载。如需转载,请与010-85650688联系;经许可后转载务必请注明出处,并添加源链接,违者本网将依法追究责任。